An inhibitory mono-ubiquitylation of the Drosophila initiator caspase Dronc functions in both apoptotic and non-apoptotic pathways
نویسندگان
چکیده
Apoptosis is an evolutionary conserved cell death mechanism, which requires activation of initiator and effector caspases. The Drosophila initiator caspase Dronc, the ortholog of mammalian Caspase-2 and Caspase-9, has an N-terminal CARD domain that recruits Dronc into the apoptosome for activation. In addition to its role in apoptosis, Dronc also has non-apoptotic functions such as compensatory proliferation. One mechanism to control the activation of Dronc is ubiquitylation. However, the mechanistic details of ubiquitylation of Dronc are less clear. For example, monomeric inactive Dronc is subject to non-degradative ubiquitylation in living cells, while ubiquitylation of active apoptosome-bound Dronc triggers its proteolytic degradation in apoptotic cells. Here, we examined the role of non-degradative ubiquitylation of Dronc in living cells in vivo, i.e. in the context of a multi-cellular organism. Our in vivo data suggest that in living cells Dronc is mono-ubiquitylated on Lys78 (K78) in its CARD domain. This ubiquitylation prevents activation of Dronc in the apoptosome and protects cells from apoptosis. Furthermore, K78 ubiquitylation plays an inhibitory role for non-apoptotic functions of Dronc. We provide evidence that not all of the non-apoptotic functions of Dronc require its catalytic activity. In conclusion, we demonstrate a mechanism whereby Dronc's apoptotic and non-apoptotic activities can be kept silenced in a non-degradative manner through a single ubiquitylation event in living cells.
منابع مشابه
Controlling caspase activity in life and death
Every day, billions of human cells terminate their normal activities and launch intrinsic suicide pathways. Timely cell death is orchestrated by destructive functions encoded by dying cells, such as caspase proteases in the case of apoptotic or pyroptotic cell death. Caspases cleave specific intracellular substrates to kill and dismantle cells destined for elimination, and their dysregulation l...
متن کاملDrosophila IAP1-Mediated Ubiquitylation Controls Activation of the Initiator Caspase DRONC Independent of Protein Degradation
Ubiquitylation targets proteins for proteasome-mediated degradation and plays important roles in many biological processes including apoptosis. However, non-proteolytic functions of ubiquitylation are also known. In Drosophila, the inhibitor of apoptosis protein 1 (DIAP1) is known to ubiquitylate the initiator caspase DRONC in vitro. Because DRONC protein accumulates in diap1 mutant cells that ...
متن کاملThe Drosophila DIAP1 protein is required to prevent accumulation of a continuously generated, processed form of the apical caspase DRONC.
Although loss of the inhibitor of apoptosis (IAP) protein DIAP1 has been shown to result in caspase activation and spontaneous cell death in Drosophila cells and embryos, the point at which DIAP1 normally functions to inhibit caspase activation is unknown. Depletion of the DIAP1 protein in Drosophila S2 cells or the Sf-IAP protein in Spodoptera frugiperda Sf21 cells by RNA interference (RNAi) o...
متن کاملThe unconventional myosin CRINKLED and its mammalian orthologue MYO7A regulate caspases in their signalling roles.
Caspases provide vital links in non-apoptotic regulatory networks controlling inflammation, compensatory proliferation, morphology and cell migration. How caspases are activated under non-apoptotic conditions and process a selective set of substrates without killing the cell remain enigmatic. Here we find that the Drosophila unconventional myosin CRINKLED (CK) selectively interacts with the ini...
متن کاملInteractions of DNR1 with the apoptotic machinery of Drosophila melanogaster.
Caspases are crucial activators of apoptosis and NF-kappaB signaling in vertebrates and invertebrates. In Drosophila, the caspase-9 counterpart Dronc is essential for most apoptotic death, whereas the caspase-8 homolog Dredd activates NF-kappaB signaling in response to gram-negative bacterial infection. The mechanics of caspase regulation are conserved and include the activities of a family of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2017